Turbine cascade

Download this example

Input file

# Turbine cascade
#
# Run a stationary turbine cascade with prescribed flow angles.
#


# Use a new workdir for each run
workdir: runs/*

# Perfect gas inlet condition
inlet:
  Po: 1e5
  To: 300.
  cp: 1005.
  gamma: 1.4

# Set viscosity from Reynolds number
Re_surf: 4e5

# Turbine cascade design variables
mean_line:
  type: turbine_cascade
  span: [0.01, 0.011]
  Alpha: [40., -65.0]
  Ma2: 0.6
  Yh: 0.029
  htr: 0.99

# Setup annulus using fixed aspect ratios
annulus:
  AR_gap: [1.0, 1.0]
  AR_chord: 2.0

# Specify camber and thickness one one mid-span section
blades:
    - spf: 0.5
      q_thick: [0.05, 0.12, 0.3, 0., 0.00, 0.18]
      q_camber: [10., -2., 0.0]

# Discretise fluid domain using a coarse H-mesh
mesh:
  type: h
  yplus: 30.0
  resolution_factor: 0.5

# Use circulation for number of blades
nblade:
  - Co: 0.7

# Configure the built-in flow solver
solver:
  type: emb
  n_step: 5000
  n_step_avg: 1000

Log output

*** TURBIGEN v2.1.0 ***
Starting at 2025-04-23T11:58:37
Working directory: /builds/jb753/turbigen/runs/0001
Inlet: PerfectState(P=1.000 bar, T=300.0 K)
MeanLine(
    Po=[1.     0.9927] bar,
    To=[300. 300.] K,
    Ma=[0.311 0.6  ],
    Vx=[81.9 85.1] m/s,
    Vr=[0. 0.] m/s,
    Vt=[  68.7 -182.4] m/s,
    Vt_rel=[  68.7 -182.4] m/s,
    Al=[ 40. -65.] deg,
    Al_rel=[ 40. -65.] deg,
    rpm=[0. 0.],
    mdot=[5.66 5.66] kg/s
    )
Designing annulus...
FixedAR(nrow=1, x=[0.002625], r=[0.995], AR=[2.])
Designing blades...
Nblade: [473]
Tip gaps: [0.]
Re_surf=[4e+05]
Generating mesh...
Making an H-mesh...
ncell/1e6=0.1
Applying 2D guess...
Initialising native solver...
Patitioning onto 1 processors...
Starting the main time-stepping loop...
500: tpnps=3.168e-07, remaining=2m33s
  block 0: 6.94e-05 2.47e-02 4.72e-04 2.80e-02 6.06e+00
1000: tpnps=3.168e-07, remaining=2m16s
  block 0: 2.19e-05 1.02e-02 2.19e-04 6.77e-03 2.57e+00
1500: tpnps=3.150e-07, remaining=1m58s
  block 0: 7.31e-06 2.52e-03 7.27e-05 2.88e-03 6.81e-01
2000: tpnps=3.157e-07, remaining=1m41s
  block 0: 1.97e-06 1.06e-03 1.62e-05 9.26e-04 1.70e-01
2500: tpnps=3.150e-07, remaining=1m24s
  block 0: 5.64e-07 3.93e-04 6.78e-06 5.67e-04 6.09e-02
3000: tpnps=3.152e-07, remaining=1m7s
  block 0: 1.47e-07 1.61e-04 1.28e-06 5.76e-05 1.75e-02
3500: tpnps=3.250e-07, remaining=0m51s
  block 0: 8.86e-08 3.45e-05 5.53e-07 1.02e-04 5.85e-03
4000: tpnps=3.176e-07, remaining=0m34s
  block 0: 1.24e-07 6.74e-05 6.25e-07 1.96e-04 3.70e-03
4500: tpnps=3.207e-07, remaining=0m17s
  block 0: 1.37e-07 8.24e-05 1.04e-06 2.08e-04 8.38e-03
4999: tpnps=3.192e-07, remaining=0m0s
  block 0: 1.40e-07 8.72e-05 1.13e-06 2.08e-04 9.90e-03
Elapsed time 170.96s
Average tpnps=3.177e-07
mdot_in/out=5.63/5.63, err=-0.0%
Variable  Nominal  Actual  Err_abs  Err_rel/%
---------------------------------------------
Alpha[0]       40    39.8     0.24       0.59
Alpha[1]      -65   -64.8    -0.25       0.38
     Ma2      0.6    0.59  0.00976       1.63
      Yh    0.029  0.0471  -0.0181      -62.3
     htr     0.99    0.99        0          0
 span[0]     0.01    0.01        0          0
 span[1]    0.011   0.011        0          0
      Ys           0.0471
      RR                1
 Beta[0]           0.0708
 Beta[1]           0.0313
Efficiency/%: eta_tt=2.8, eta_ts=0.1

Plots

../_images/turbine_cascade.yaml_post_1.svg ../_images/turbine_cascade.yaml_post_2.svg ../_images/turbine_cascade.yaml_post_3.svg ../_images/turbine_cascade.yaml_post_4.svg